

Building AI Agents
With Google’s Agent
Development Kit
A Hands-On Guide to Crafting
Intelligent, Scalable AI Agents with
Google's Cutting-Edge Toolkit

Executive Summary
Google’s Agent Development Kit (ADK), introduced at Google Cloud Next 2025, is an
open-source framework designed to simplify the development, orchestration, evaluation,
and deployment of AI agents and multi-agent systems. Optimized for Google’s Gemini
models and the Google Cloud ecosystem, it is model-agnostic, deployment-agnostic,
and interoperable with other frameworks like LangChain and CrewAI.

ADK enables the creation of modular, scalable applications by composing multiple
specialized agents into hierarchical, collaborative systems. These agents can
coordinate complex tasks, delegate sub-tasks, and operate in parallel, sequential, or
looping workflows.

https://google.github.io/adk-docs/

Introduction..3
Overview of Google's Agent Development Kit (ADK).. 4

Purpose and Functionality... 4
Key Features... 4
Getting Started...6

A2A - Agent to Agent Protocol... 7
What is the A2A Protocol?...7

Building Multi-Agent Systems..8
Architecture of Multi-Agent Systems in ADK... 10
Practical Steps to Build a Multi-Agent System with ADK... 11

Building AI Agents for E-Commerce with ADK and Vector Search...................................... 19
Step by Step Guide..19
Challenges and Considerations...31
Future of ADK and Vector Search in E-Commerce... 31

AgentOps: Operationalize AI Agents...32
Observability for Scalable AI Agents... 32
Example: Integrating AgentOps with ADK... 33

AiBuilders.academy | 2

https://aibuilders.academy/

Introduction
In the rapidly evolving landscape of artificial intelligence, the ability to create intelligent,
autonomous agents has become a game-changer for developers, businesses, and
innovators alike.

These agents—capable of reasoning, learning, and interacting with their
environments—are transforming industries, from automation and customer service to
data analysis and creative problem-solving.

With the release of Google’s groundbreaking Agent Development Kit (ADK), building
sophisticated AI agents is no longer the exclusive domain of specialized researchers or
large tech firms. This powerful, accessible toolkit empowers developers of all
backgrounds to craft custom AI agents tailored to their unique needs.

"Building AI Agents With Google’s New Agent Development Kit" is your comprehensive
guide to harnessing the full potential of this revolutionary technology.

Whether you’re a seasoned programmer or a curious beginner, this book will walk you
through the process of designing, developing, and deploying AI agents using Google’s
ADK. From understanding the core concepts of agent-based AI to leveraging the kit’s
advanced tools for real-world applications, we’ll explore step-by-step techniques,
practical examples, and best practices to help you bring your ideas to life.

In the chapters ahead, you’ll discover how to navigate the ADK’s intuitive framework,
integrate cutting-edge machine learning models, and create agents that can adapt and
thrive in dynamic environments. We’ll also dive into real-world case studies, showcasing
how businesses and developers are using the ADK to solve complex challenges and
unlock new opportunities. Whether your goal is to automate workflows, enhance user
experiences, or push the boundaries of AI innovation, this book equips you with the
knowledge and tools to succeed.

Join us on this exciting journey into the future of AI development. Let’s build intelligent
agents that not only meet today’s demands but also shape tomorrow’s possibilities with
Google’s Agent Development Kit.

AiBuilders.academy | 3

https://aibuilders.academy/

Overview of Google's Agent
Development Kit (ADK)

Purpose and Functionality
The Google Agent Development Kit (ADK) is designed to simplify the creation of
complex, multi-agent AI applications. It enables developers to build intelligent,
personalized, and interactive AI agents with minimal code—often in under 100
lines—while maintaining flexibility and customizability.

The ADK supports the development of agentic systems that can handle tasks like
summarization, proofreading, image generation, and more, leveraging Google’s AI
models such as Gemini Nano, Gemini Pro, Gemini Flash, and Imagen.

Key Features

● Code-First Approach: Allows developers to define agent behavior
programmatically, offering control over agent orchestration and functionality.

● Multi-Agent Support: Facilitates the creation of systems where multiple AI
agents can collaborate to perform complex tasks.

● Rich Tool Ecosystem: Integrates with a variety of tools and APIs, including
Google’s ML Kit GenAI APIs for tasks like summarization and image description,
and Firebase AI Logic for advanced use cases like image generation and
Android XR applications.

● Model Context Protocol (MCP): Supports secure connections between data
and agents, ensuring privacy and security, especially for enterprise-grade
applications.

● Flexible Orchestration: Enables developers to customize how agents interact
and process tasks, making it suitable for diverse applications, including live audio
apps and multi-agent workflows.

AiBuilders.academy | 4

https://aibuilders.academy/

● Integrated Development Experience: Streamlines workflows with tools for
debugging, testing, and deployment, including support for streaming and
state/memory management.

● Extensibility: Allows developers to extend functionality to meet specific project
needs.

● AI-Powered Enhancements: Integrates with Google’s AI tools, such as Gemini
in Android Studio, to provide features like code-aware chat, dependency
management, and bug fixing.

Use Cases

The ADK is versatile and supports a range of applications, including:

● Building AI-driven Android apps with features like selfie transformation (e.g.,
Androidify app).

● Creating multi-agent search systems for efficient data processing.
● Developing enterprise-grade AI solutions with enhanced privacy and security

through Gemini Code Assist Standard or Enterprise editions.
● Supporting in-car experiences, wearables (Wear OS 6), and Android XR

applications with new APIs and libraries.

Development and Accessibility

● Open-Source: The ADK is freely available as an open-source framework,
installable via pip install google-adk.

● Cross-Model Compatibility: Supports Google’s Gemini models and other
third-party AI models, making it adaptable to various development needs.

● Community and Documentation: Google provides developer documentation,
sample apps, and sessions (e.g., Google I/O 2025) to help developers get
started. The framework has been well-received, with developers showcasing
projects built with ADK on platforms like X.

AiBuilders.academy | 5

https://aibuilders.academy/

Integration with Android Ecosystem

While the ADK is a standalone framework, it integrates seamlessly with Google’s
broader Android development tools, such as Android Studio and Firebase.

For example, it supports AI-driven features in Android Studio Narwhal Feature Drop
(2025.2), including lint checks for Google Play policies and compatibility testing for 16
KB page sizes. It also enhances development for Wear OS, Android XR, and in-car
apps through libraries like Wear Compose Material 3 and Car App Library.

Getting Started
Developers can install the ADK using pip install google-adk and explore Google’s
developer documentation or Google I/O 2025 sessions for tutorials and sample projects.
The framework is accessible to both beginners and experienced developers, with a
focus on reducing complexity while enabling sophisticated AI-driven applications.

AiBuilders.academy | 6

https://aibuilders.academy/

A2A - Agent to Agent Protocol
The Agent-to-Agent (A2A) Protocol, as implemented in Google’s Agent Development Kit
(ADK), is an open standard designed to enable seamless communication and
interoperability between AI agents, whether built within the ADK or using other
frameworks.

It provides a structured way for agents to discover, interact, and collaborate with each
other across platforms, fostering a decentralized and extensible ecosystem for
agent-based systems.

What is the A2A Protocol?
The A2A protocol is a standardized communication framework that allows AI agents to
exchange information, delegate tasks, and coordinate actions in a platform-agnostic
manner.

It is analogous to how APIs enable software systems to interact, but tailored specifically
for AI agents, which often require dynamic, context-aware, and multimodal interactions.
In the context of ADK, the A2A protocol enables agents to operate as modular
components in complex workflows, interacting with other ADK agents or external agents
built with frameworks like LangGraph or CrewAI.

AiBuilders.academy | 7

https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://aibuilders.academy/

Building Multi-Agent Systems
A multi-agent system (MAS) consists of multiple autonomous AI agents that collaborate
or coordinate to achieve complex goals.

Each agent typically has specialized roles, such as planning, task execution, or data
retrieval, making the system modular, scalable, and robust compared to a single,
monolithic agent.

Multi-agent systems are particularly valuable for enterprise applications, such as
automating business processes, customer support, or data analysis, where tasks
require diverse capabilities and coordination.

The ADK addresses the challenges of building such systems by offering:

● Modularity: Developers can create specialized agents and combine them into
hierarchical or collaborative workflows.

● Flexibility: It supports multiple large language models (LLMs) like Gemini,
GPT-4o, Claude, and Mistral via LiteLLM, and integrates with third-party libraries
like LangChain and CrewAI.

● Scalability: Agents can be deployed locally, on Google Cloud's Vertex AI, or via
custom infrastructure like Cloud Run or Docker.

● Control: Deterministic workflows and guardrails ensure predictable agent
behavior, critical for enterprise use.

Unlike frameworks like LangChain (focused on tool chaining) or AutoGen (optimized for
multi-turn dialogues), ADK emphasizes structured, production-ready systems with
built-in memory, tooling, and orchestration. It’s designed to feel like traditional software
development, with a code-first Python approach, making it accessible yet powerful for
complex applications.

Core Features of the ADK
The ADK provides a robust set of tools and primitives to build multi-agent systems.
Below are its key features:

● Agent Types:

AiBuilders.academy | 8

https://aibuilders.academy/

● LLM Agents: Powered by LLMs, these handle language-based tasks like
reasoning, planning, or generating responses. They can dynamically
decide which tools to use based on context.

● Workflow Agents: These include SequentialAgent, ParallelAgent, and
LoopAgent, which manage the execution flow of sub-agents in predefined
patterns (e.g., sequential for step-by-step tasks, parallel for independent
tasks, or loop for iterative refinement).

● Custom Agents: Developers can extend the BaseAgent class to create
agents with tailored logic or integrations for specific use cases.

● Rich Tool Ecosystem:
● ADK supports pre-built tools (e.g., Google Search, code execution),

custom functions, OpenAPI specs, and third-party integrations (e.g.,
LangChain, Firecrawl for web scraping).

● Agents can use other agents as tools, enabling complex coordination and
delegation.

● Flexible Orchestration:
● Developers can define workflows using deterministic patterns (sequential,

parallel, loop) or LLM-driven dynamic routing for adaptive behavior.
● Hierarchical structures allow parent agents to coordinate sub-agents,

enhancing modularity.
● Integrated Developer Experience:

● A command-line interface (CLI) and visual Web UI (e.g., adk web, adk run)
enable local development, testing, and debugging.

● Built-in evaluation tools assess agent performance by analyzing final
outputs and step-by-step execution against test cases.

● Deployment Options:
● Agents can be containerized and deployed anywhere, from local

environments to Google Cloud’s Vertex AI Agent Engine or Cloud Run.
● The Agent Engine, a managed runtime, handles scaling, security, and

monitoring, ensuring a seamless transition from prototype to production.
● Interoperability:

● ADK supports the Agent2Agent (A2A) protocol, an open standard for
agent communication across frameworks and vendors, backed by over 50
industry partners like Atlassian, Salesforce, and SAP.

AiBuilders.academy | 9

https://aibuilders.academy/

● It integrates with Anthropic’s Model Context Protocol (MCP) for
standardized data movement between agents and external APIs.

● State and Memory Management:
● ADK supports session-based state management, allowing agents to

maintain context across interactions via shared session state or artifacts
(e.g., files, binary data).

● Short- and long-term memory ensure context preservation, critical for
multi-step workflows.

● Streaming and Multimodal Support:
● ADK enables real-time interactions with bidirectional audio and video

streaming, supporting natural, human-like conversations.
● It handles multimodal inputs (text, images, etc.), making it versatile for

diverse applications.

Architecture of Multi-Agent Systems in ADK
ADK’s architecture is built around modularity and hierarchy, enabling developers to
structure multi-agent systems as a “society of mind” where specialized agents
collaborate. Here’s how it works:

● Agent Hierarchy:
● Agents are organized in a parent-child structure, where a parent agent

(e.g., a coordinator) delegates tasks to sub-agents. The BaseAgent class
defines this relationship, automatically setting parent-child links during
initialization.

● Example: A root TripPlanner agent delegates flight booking to a
FlightAgent and hotel booking to a HotelAgent.

● Workflow Orchestration:
● SequentialAgent: Executes sub-agents in a predefined order, ideal for

linear workflows like generating a proposal followed by compliance
checks.

● ParallelAgent: Runs independent tasks concurrently, e.g., fetching flight
and hotel details simultaneously to save time.

AiBuilders.academy | 10

https://aibuilders.academy/

● LoopAgent: Iteratively refines outputs (e.g., code or text) until a quality
threshold or maximum iterations are reached.

● Dynamic routing via LLM-driven decisions allows adaptive workflows, e.g.,
routing a user query to the most relevant agent.

● Communication:
● Agents communicate via shared session state or the A2A protocol,

enabling seamless interaction across frameworks or vendors.
● Callbacks allow developers to intercept and modify agent behavior (e.g.,

implementing safety filters to block prohibited content).
● Tool Integration:

● Agents can access over 100 pre-built connectors to enterprise systems
like BigQuery, AlloyDB, or Apigee-managed APIs.

● Custom tools or external APIs (e.g., SerpAPI for flight search) can be
integrated via MCP or OpenAPI specs.

● State Management:
● Shared session state stores intermediate results (e.g., a draft document or

flight details), ensuring continuity across agent interactions.
● Artifacts (e.g., files stored in Google Cloud Storage) enable persistent data

handling.

Practical Steps to Build a Multi-Agent System
with ADK
Here’s a step-by-step guide to building a simple multi-agent system, such as a travel
assistant with agents for flight search, hotel booking, and itinerary planning, based on
ADK documentation and tutorials.

1. Set Up Your Environment

● Prerequisites:
● Python 3.10+ or Java 17+.

AiBuilders.academy | 11

https://aibuilders.academy/

Shell

Shell

Shell

● A Google Cloud project with the Vertex AI API enabled.
● Install the ADK package: pip install google-adk.
● Optionally, install MCP servers (e.g., pip install mcp-flight-search) for

external API integration.
● Create a Virtual Environment:
● bash

python -m venv .venv

source .venv/bin/activate # macOS/Linux

● .venv\Scripts\activate.bat # Windows CMD

● Set Up Credentials:
● Configure Google Cloud credentials for Vertex AI:
● bash

export GOOGLE_CLOUD_PROJECT="your-project-id"

export GOOGLE_CLOUD_LOCATION="us-central1"

● export GOOGLE_GENAI_USE_VERTEXAI="True"

2. Define the Multi-Agent System

Create a directory structure for your project:
bash

mkdir travel_assistant

touch travel_assistant/__init__.py travel_assistant/agent.py

travel_assistant/.env

AiBuilders.academy | 12

https://aibuilders.academy/

Python

Define agents in agent.py:
python

from google.adk.agents import Agent, SequentialAgent, ParallelAgent

from google.adk.tools import google_search

Flight Search Agent

flight_agent = Agent(

 name="FlightAgent",

 model="gemini-2.0-flash",

 instruction="Search for flights based on user input.",

 tools=[google_search] # Replace with MCP flight search tool

)

Hotel Search Agent

hotel_agent = Agent(

 name="HotelAgent",

 model="gemini-2.0-flash",

 instruction="Find hotels based on user preferences.",

 tools=[google_search] # Replace with MCP hotel search tool

)

Coordinator Agent

root_agent = SequentialAgent(

 name="TripPlanner",

 sub_agents=[flight_agent, hotel_agent],

AiBuilders.academy | 13

https://aibuilders.academy/

Shell

Shell

Shell

 instruction="Coordinate travel planning by delegating to flight and

hotel agents."

)

3. Test Locally

● Launch the ADK Web UI:
● bash

● adk web travel_assistant

●

Open http://localhost:8000 to interact with the agent.
● Alternatively, use the CLI:
● bash

● adk run travel_assistant

4. Evaluate Performance

● Use ADK’s evaluation tools to assess agent performance:
● bash

● adk eval travel_assistant samples_for_testing/eval_set.json

●

This tests the system against predefined test cases, evaluating both final outputs
and execution steps.

5. Deploy to Production

AiBuilders.academy | 14

https://aibuilders.academy/

Shell

Python

Python

● Containerize: Package the agent as a Docker container for deployment.
● Deploy to Vertex AI Agent Engine: Use Google Cloud’s managed runtime for

scaling and monitoring.
● bash

gcloud run deploy travel-assistant \

 --source . \

● --region us-central1

● Alternatively, deploy to Cloud Run for custom infrastructure control.

6. Integrate with A2A and MCP

● Enable A2A for cross-agent communication:
● python

from google.adk.a2a import A2AClient

a2a_client = A2AClient(endpoint="https://agent2agent.example.com/run")

● root_agent.tools.append(a2a_client)

● Connect to MCP servers for external data:
● python

from mcp_flight_search import FlightSearchTool

● flight_agent.tools.append(FlightSearchTool())

Example Workflow

For a query like “Plan a trip to Paris,” the TripPlanner agent:

AiBuilders.academy | 15

https://aibuilders.academy/

● Delegates flight search to FlightAgent, which uses a tool to fetch flight options.
● Delegates hotel search to HotelAgent, running concurrently via a ParallelAgent.
● Stores results in shared session state and generates an itinerary.

Use Cases and Real-World Applications
ADK’s flexibility makes it suitable for various domains. Here are some notable use
cases:

● Automation of Complex Processes:
● Example: Revionics uses ADK to build a multi-agent system for retail

pricing, where agents retrieve data, apply constraints, and forecast price
impacts.

● Workflow: A coordinator agent delegates to data retrieval, pricing, and
forecasting agents, using sequential and parallel workflows.

● Content Creation:
● Build systems to generate marketing materials, reports, or code by

orchestrating agents for drafting, reviewing, and formatting.
● Example: A GeneratorAgent creates a draft, a ReviewerAgent checks

quality, and a FormatterAgent finalizes the output.
● Customer Support:

● Create a multi-agent system where a QueryRouterAgent directs user
inquiries to specialized agents (e.g., billing, technical support) with context
preservation.

● Data Analysis:
● Agents can analyze data from BigQuery, derive insights, and present

findings collaboratively.
● Example: A DataAgent retrieves data, an AnalysisAgent processes it, and

a ReportAgent generates visualizations.
● Travel Planning:

● As shown in the example above, agents can handle flight booking, hotel
reservations, and itinerary planning, integrating with external APIs via
MCP.

AiBuilders.academy | 16

https://aibuilders.academy/

Strengths of ADK
● Enterprise-Grade Integration: Tight integration with Google Cloud (Vertex AI,

BigQuery, Apigee) and over 100 connectors make it ideal for enterprise
workflows.

● Open-Source and Model-Agnostic: Supports multiple LLMs and frameworks,
reducing vendor lock-in.

● Developer-Friendly: The code-first approach, CLI, and Web UI streamline
development, testing, and debugging.

● Interoperability: A2A and MCP enable collaboration across frameworks and
vendors, fostering a broader AI ecosystem.

● Scalability: From local prototyping to cloud deployment, ADK supports the full
development lifecycle.

Potential Limitations and Critical Considerations
While ADK is powerful, there are areas to critically examine:

● Complexity for Beginners: The variety of agent types (LLM, Workflow, Custom)
and orchestration patterns can overwhelm novice developers. Some X posts note
that the developer experience feels optimized for advanced users, with async
agents and conversation management adding cognitive load.

● Documentation Issues: Users have reported friction from unnecessary setup
steps (e.g., manual folder creation) and broken links (e.g., artifacts
documentation).

● Overengineering: The distinction between Sequential, Parallel, and Loop agents
could be simplified into a unified workflow interface to reduce complexity.

● Competition: Frameworks like OpenAI’s Agents SDK, Amazon’s Agents on
Bedrock, or LangChain offer similar capabilities. ADK’s reliance on Google Cloud
for full power may deter users committed to other cloud providers.

AiBuilders.academy | 17

https://aibuilders.academy/

● Early Stage: Released in April 2025, ADK is relatively new, and its ecosystem
(e.g., A2A adoption) is still maturing. Developers should monitor community
contributions and updates.

Getting Started and Community Engagement
To dive deeper:

● Documentation: Explore the official ADK documentation at google.github.io for
detailed guides.

● Tutorials: Check Medium articles or Google Cloud Codelabs for hands-on
examples, like building a travel assistant or kitchen renovation system.

● Hackathons: Join events like the ADK Hackathon with Google Cloud to build
and showcase projects.

● Community: Contribute to the open-source project on GitHub
(google/adk-python) or discuss on platforms like Reddit.

Conclusion
By leveraging ADK’s tools, developers can create sophisticated systems like travel
planners, pricing optimizers, or customer support assistants, contributing to the evolving
landscape of agentic AI.

AiBuilders.academy | 18

https://aibuilders.academy/

Building AI Agents for
E-Commerce with ADK and Vector
Search
E-commerce demands intelligent, responsive systems to enhance customer
experiences, optimize operations, and drive sales.

ADK, combined with Vector Search, enables developers to build AI agents that deliver
personalized recommendations, streamline customer support, and optimize workflows
like pricing or inventory management.

Vector Search, available through Google Cloud’s Vertex AI or AlloyDB with ScaNN,
enhances agents by enabling semantic and multimodal search capabilities, crucial for
handling complex e-commerce queries.

Step by Step Guide
Below is a step-by-step guide to building such agents, with a focus on a personalized
shopping assistant as a practical example.

Step 1: Define the E-Commerce Use Case

Start by identifying the specific commerce problem your AI agent will solve. For this
guide, we’ll focus on a personalized shopping assistant that:

● Understands customer queries via natural language (e.g., “Find me running
shoes for trail hiking”).

● Uses Vector Search to retrieve relevant products based on semantic
understanding of product descriptions, images, or user preferences.

● Provides tailored recommendations with explanations, integrating real-time data
like inventory or pricing.

Other use cases could include dynamic pricing agents, inventory optimization agents, or
customer support bots, but the personalized shopping assistant showcases ADK’s
flexibility and Vector Search’s power.

AiBuilders.academy | 19

https://aibuilders.academy/

Shell

Shell

Step 2: Set Up Your Environment

To build an ADK-based agent, you’ll need a Google Cloud project with the Vertex AI API
enabled. Follow these steps:

● Create a Google Cloud Project:
● Sign into Google Cloud and create a project or use an existing one.
● Enable the Vertex AI API in the Google Cloud Console.
● Obtain an API key from Google AI Studio or Vertex AI Express Mode for

Gemini model access.
● Install ADK and Dependencies:

● Set up a Python virtual environment (Python 3.10+ recommended):
● bash

python -m venv venv

● source venv/bin/activate

● Install the ADK and required libraries:

● bash

● pip install google-adk litellm

● For Vector Search, ensure access to Vertex AI Vector Search or AlloyDB with

ScaNN. Install additional dependencies if needed (e.g.,

google-cloud-aiplatform for Vertex AI).

● Configure Environment Variables:

● Create a .env file in your project directory to store credentials:

● plaintext

AiBuilders.academy | 20

https://aibuilders.academy/

None

Shell

GOOGLE_GENAI_USE_VERTEXAI=TRUE

GOOGLE_API_KEY=your-vertex-ai-api-key

GOOGLE_CLOUD_PROJECT=your-project-id

● GOOGLE_CLOUD_LOCATION=us-central1

● Authenticate with Google Cloud:

● bash

● gcloud auth login

Step 3: Design the Agent Architecture

For the personalized shopping assistant, we’ll create a multi-agent system with ADK,
where each agent handles a specific task:

● Query Agent: Interprets customer queries using an LLM (e.g., Gemini 2.0 Flash)
and extracts intent and parameters (e.g., “trail running shoes” → product type,
use case).

● Search Agent: Performs Vector Search to retrieve relevant products from a
product catalog stored in Vertex AI Vector Search or AlloyDB.

● Recommendation Agent: Combines search results with user preferences (e.g.,
budget, brand) to generate personalized recommendations.

● Response Agent: Formats and delivers the final response to the customer,
potentially via a conversational interface.

This modular design leverages ADK’s ability to orchestrate multiple agents, ensuring
scalability and maintainability.

AiBuilders.academy | 21

https://aibuilders.academy/

Python

Step 4: Implement Vector Search for Product Retrieval

Vector Search enables semantic search by representing products as
embeddings—numerical vectors capturing the meaning of product descriptions, images,
or attributes.

This allows the agent to find products that match the customer’s query, even if the exact
keywords aren’t used (e.g., “shoes for rugged trails” matches “trail running sneakers”).

● Prepare the Product Catalog:
● Store product data (descriptions, images, metadata like price or brand) in

a database like AlloyDB or a Vertex AI Vector Search index.
● Generate embeddings for product descriptions and images using Vertex

AI’s multimodal embedding models (e.g., textembedding-gecko for text or
a multimodal model for images). For example:

● python

from google.cloud import aiplatform

aiplatform.init(project="your-project-id", location="us-central1")

index = aiplatform.MatchingEngineIndex.create_tree_ah_index(

 display_name="product_index",

 dimensions=768, # Embedding dimension

 approximate_neighbors_count=10

●)

● Upload product embeddings to the index, associating each with a product ID.

● Create a Vector Search Tool:

AiBuilders.academy | 22

https://aibuilders.academy/

Python

● Define a Python function to perform Vector Search, which the Search Agent will

use:

● python

from google.cloud import aiplatform

def vector_search(query: str) -> list:

 """Performs Vector Search to find relevant products.

 Args:

 query: Customer's search query (e.g., 'trail running shoes').

 Returns:

 List of product IDs and metadata for top matches.

 """

 # Generate query embedding

 embedding_model =

aiplatform.TextEmbeddingModel.from_pretrained("textembedding-gecko")

 query_embedding = embedding_model.get_embeddings([query])[0].values

 # Query the Vector Search index

AiBuilders.academy | 23

https://aibuilders.academy/

Python

 index_endpoint =

aiplatform.MatchingEngineIndexEndpoint("your-endpoint-id")

 results = index_endpoint.find_neighbors(

 queries=[query_embedding],

 num_neighbors=5

)

● return [{"product_id": r.id, "metadata": r.metadata} for

r in results[0]]

● Integrate with ADK:

● Attach the vector_search function as a tool to the Search Agent:

● python

from google.adk.agents import Agent

search_agent = Agent(

 name="search_agent",

 model="gemini-2.0-flash",

 description="Performs product search using Vector Search.",

 instruction="Use Vector Search to find products matching the user's

query.",

AiBuilders.academy | 24

https://aibuilders.academy/

Python

 tools=[vector_search]

●)

Step 5: Build the Multi-Agent System

Define the agent hierarchy and orchestration logic using ADK’s Orchestrator or workflow
agents. Here’s an example implementation:

python

from google.adk.agents import Agent, Orchestrator

from google.adk.tools import google_search # Optional for external data

Define Query Agent

query_agent = Agent(

 name="query_agent",

 model="gemini-2.0-flash",

 description="Interprets customer queries and extracts intent.",

 instruction="Analyze the user's query and extract product type, use

case, and preferences."

)

AiBuilders.academy | 25

https://aibuilders.academy/

Define Recommendation Agent

recommendation_agent = Agent(

 name="recommendation_agent",

 model="gemini-2.0-flash",

 description="Generates personalized product recommendations.",

 instruction="Combine search results with user preferences to

recommend products."

)

Define Response Agent

response_agent = Agent(

 name="response_agent",

 model="gemini-2.0-flash",

 description="Formats and delivers responses to the customer.",

 instruction="Present product recommendations clearly, including

name, price, and why it matches."

)

AiBuilders.academy | 26

https://aibuilders.academy/

Orchestrate the agents

orchestrator = Orchestrator(agents=[query_agent, search_agent,

recommendation_agent, response_agent])

Run the system

if __name__ == "__main__":

 user_query = "Find me running shoes for trail hiking under $100"

 result = orchestrator.run(user_query)

 print(result)

The orchestrator routes the user’s query through the agents:

● Query Agent extracts intent (e.g., product: running shoes, use case: trail hiking,
budget: <$100).

● Search Agent uses the vector_search tool to retrieve relevant products.
● Recommendation Agent filters results based on budget and preferences.
● Response Agent formats the output, e.g., “Here are two trail running shoes under

$100: [Product A, $80, great for rugged trails] and [Product B, $95, durable and
lightweight].”

Step 6: Enhance with Conversational Capabilities

Integrate the system with Dialogflow for a conversational interface, allowing customers
to interact via text or voice. Create a Dialogflow agent to handle user inputs and pass
them to the ADK orchestrator:

AiBuilders.academy | 27

https://aibuilders.academy/

Python

● Set Up Dialogflow:

● In the Google Cloud Console, create a Dialogflow ES or CX agent.

● Define intents for common e-commerce queries (e.g., “search products,” “check

order status”).

● Use webhooks to connect Dialogflow to the ADK system:

● python

from flask import Flask, request

app = Flask(__name__)

@app.route("/webhook", methods=["POST"])

def webhook():

 user_query = request.json["queryResult"]["queryText"]

 result = orchestrator.run(user_query)

● return {"fulfillmentText": result}

● Deploy the Webhook:

● Deploy the webhook to Cloud Run or another serverless platform.

● Link it to Dialogflow to enable real-time interactions.

This setup allows customers to interact via a website chatbot, mobile app, or voice assistant,

with the ADK system processing queries in the background.

AiBuilders.academy | 28

https://aibuilders.academy/

Python

Shell

Step 7: Test and Evaluate

Use ADK’s evaluation tools to test the agent’s performance:

● Unit Testing: Test individual agents (e.g., vector_search tool) with predefined queries:

● python

result = vector_search("trail running shoes")

● assert len(result) > 0, "No products found"

● End-to-End Testing: Use ADK’s adk eval command to run test cases against a dataset

(e.g., test.json with sample queries and expected outputs).

● Tracing: Enable ADK’s tracing to log intermediate steps (e.g., LLM scratchpad, tool

calls) for debugging.

Monitor performance using Google Cloud Monitoring or LangSmith for detailed metrics on

response quality and latency.

Step 8: Deploy to Production
Deploy the agent system to Vertex AI Agent Engine or Google Cloud Run for scalability:

● Containerize the Application:

● bash

docker build -t gcr.io/your-project-id/shopping-agent .

● docker push gcr.io/your-project-id/shopping-agent

● Deploy to Cloud Run:

● bash

AiBuilders.academy | 29

https://aibuilders.academy/

Shell

gcloud run deploy shopping-agent \

 --image gcr.io/your-project-id/shopping-agent \

 --region us-central1 \

● --allow-unauthenticated

● Configure session management for stateful interactions (e.g., remembering user

preferences across sessions) using ADK’s InMemorySessionService or a custom

database.

Step 9: Optimize with Advanced Vector Search Techniques

Enhance the Search Agent with advanced Vector Search features:

● Multimodal Embeddings: Use Vertex AI’s multimodal models to combine text and
image embeddings, allowing searches like “shoes like this picture” by uploading
an image.

● Hybrid Search: Combine semantic (vector) and keyword search for more
accurate results, e.g., matching “trail running shoes” with specific brands or price
ranges.

● Task-Type Embeddings: Train embeddings to prioritize products based on task
relevance (e.g., “hiking” vs. “running”), improving recommendation quality.

Real-World Example

A retailer like Revionics uses ADK to build a multi-agent system for dynamic pricing,
where a Search Agent retrieves competitor data via Vector Search, a Planner Agent
defines pricing goals, and a Worker Agent applies business rules.

This system increased margins by 10% by automating pricing workflows. Similarly, a
personalized shopping assistant could use Vector Search to recommend products,
Dialogflow for customer interactions, and ADK for orchestration, achieving a 15% boost
in conversion rates.

AiBuilders.academy | 30

https://aibuilders.academy/

Challenges and Considerations
● Data Quality: Ensure the product catalog is clean and comprehensive, as poor

embeddings lead to inaccurate search results.
● Scalability: Vector Search indexes can be resource-intensive; optimize by tuning

the number of neighbors or using approximate nearest neighbor (aNN) search
with AlloyDB’s ScaNN.

● Cost Management: Monitor API usage, as Vector Search and Gemini model calls
incur costs. Use Google Cloud’s free tier or credits for prototyping.

● Privacy and Security: Implement ADK’s safety settings (e.g., content filters) and
comply with regulations like GDPR when handling customer data.

Future of ADK and Vector Search in E-Commerce
ADK’s flexibility and Vector Search’s semantic capabilities position them as
game-changers for e-commerce. Future advancements may include:

● Tighter integration with Gemini’s multimodal capabilities for richer customer
interactions (e.g., video-based product searches).

● Enhanced A2A protocol support for cross-platform agent collaboration, enabling
agents to interact with third-party systems like SAP or Zoom.

● Improved observability tools for real-time monitoring of agent performance in
production.

By combining ADK’s agent orchestration with Vector Search’s powerful retrieval,
businesses can create intelligent, scalable e-commerce solutions that anticipate
customer needs and optimize operations.

Start with a small prototype—perhaps a single agent for product
recommendations—and scale to a full multi-agent system. With Google Cloud’s
resources and ADK’s open-source community, the possibilities for agentic commerce
are limitless.

AiBuilders.academy | 31

https://aibuilders.academy/

AgentOps: Operationalize AI
Agents
AI agents are autonomous programs powered by large language models (LLMs) that
can handle tasks ranging from customer service to data analysis and supply chain
optimization.

These agents are transforming industries by automating repetitive processes,
personalizing user interactions, and enabling data-driven decision-making. However,
deploying AI agents at scale presents challenges such as managing costs, ensuring
reliability, debugging complex interactions, and maintaining compliance with enterprise
standards.

Operationalizing AI agents involves moving them from prototype to production, ensuring
they are cost-effective, observable, and maintainable in live environments. This requires
tools that provide granular insights into agent performance, seamless integration with
existing systems, and flexible frameworks for building multi-agent architectures.

Google’s ADK and AgentOps address these needs by offering a code-first approach to
agent development and comprehensive observability for production-grade deployments.

Observability for Scalable AI Agents
While ADK provides the foundation for building agents, operationalizing them requires
robust observability to monitor performance, track costs, and debug issues in
production.

AgentOps, a Python SDK developed by Agency AI, addresses these needs by offering
comprehensive monitoring and analytics for AI agents, particularly those powered by
Google’s Gemini API.

Key features of AgentOps include:

● Comprehensive Interaction Tracking: AgentOps captures data on every agent
interaction, not just LLM calls, providing a detailed view of multi-agent system
behavior. This is crucial for debugging, optimization, and compliance.

AiBuilders.academy | 32

https://aibuilders.academy/

Python

● Cost Tracking and Optimization: AgentOps helps enterprises manage LLM costs,
which can be significant at scale. For example, Agency AI reported that
enterprises spending $80,000 monthly on LLM calls with other providers could
reduce costs to a few thousand dollars using Gemini 1.5 Flash with AgentOps.

● Seamless Integration with ADK: AgentOps integrates natively with ADK,
automatically tracking agent interactions with minimal setup. Developers can
initialize AgentOps with a few lines of code to gain real-time visibility into API
calls and performance metrics.

● Benchmarking and Auditing: AgentOps provides tools for benchmarking agent
performance and generating audit trails, ensuring reliability and compliance in
enterprise environments.

● Ease of Use: Integrating AgentOps with ADK and Gemini models takes minutes
using libraries like LiteLLM, making it accessible for developers of all skill levels.

Example: Integrating AgentOps with ADK
Here’s how to set up AgentOps to monitor an ADK agent:

python

import os

from dotenv import load_dotenv

import agentops

from google.adk.agents import LlmAgent

from google.adk.runners import Runner

from google.genai import types

Load environment variables

load_dotenv()

os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")

AiBuilders.academy | 33

https://aibuilders.academy/

os.environ["AGENTOPS_API_KEY"] = os.getenv("AGENTOPS_API_KEY")

Initialize AgentOps

agentops.init()

Define ADK agent

agent = LlmAgent(

 name="weather_agent",

 model="gemini-2.0-flash",

 description="A helpful assistant that checks weather.",

 tools=[get_weather]

)

Set up runner and session

APP_NAME = "weather_app"

USER_ID = "user_123"

SESSION_ID = "session_456"

session_service = InMemorySessionService()

runner = Runner(agent=agent, app_name=APP_NAME,

session_service=session_service)

Run the agent

def run_query(query):

 content = types.Content(role="user", parts=[types.Part(text=query)])

AiBuilders.academy | 34

https://aibuilders.academy/

 for event in runner.run(user_id=USER_ID, session_id=SESSION_ID,

new_message=content):

 if event.is_final_response():

 return event.content.parts[0].text

 return "No response received."

In this example, AgentOps tracks all interactions of the ADK weather agent, providing
insights into API calls, costs, and performance. Developers can view these metrics in
real-time via the AgentOps dashboard.

AiBuilders.academy | 35

https://aibuilders.academy/

	Building AI Agents With Google’s Agent Development Kit
	Introduction
	Overview of Google's Agent Development Kit (ADK)
	Purpose and Functionality
	Key Features
	Use Cases
	Development and Accessibility
	Integration with Android Ecosystem

	Getting Started

	A2A - Agent to Agent Protocol
	What is the A2A Protocol?

	Building Multi-Agent Systems
	Architecture of Multi-Agent Systems in ADK
	Practical Steps to Build a Multi-Agent System with ADK

	Building AI Agents for E-Commerce with ADK and Vector Search
	Step by Step Guide
	Step 1: Define the E-Commerce Use Case
	Step 2: Set Up Your Environment
	Step 3: Design the Agent Architecture
	Step 4: Implement Vector Search for Product Retrieval
	Step 5: Build the Multi-Agent System
	Step 6: Enhance with Conversational Capabilities
	Step 7: Test and Evaluate
	Step 8: Deploy to Production
	Step 9: Optimize with Advanced Vector Search Techniques

	Challenges and Considerations
	Future of ADK and Vector Search in E-Commerce

	AgentOps: Operationalize AI Agents
	Observability for Scalable AI Agents
	Example: Integrating AgentOps with ADK

