

Building AI Agents
With Google’s Agent
Development Kit
A Hands-On Guide to Crafting
Intelligent, Scalable AI Agents with
Google's Cutting-Edge Toolkit

Executive Summary
Google’s Agent Development Kit (ADK), introduced at Google Cloud Next 2025, is an

open-source framework designed to simplify the development, orchestration, evaluation,

and deployment of AI agents and multi-agent systems. Optimized for Google’s Gemini

models and the Google Cloud ecosystem, it is model-agnostic, deployment-agnostic, and

interoperable with other frameworks like LangChain and CrewAI.

ADK enables the creation of modular, scalable applications by composing multiple

specialized agents into hierarchical, collaborative systems. These agents can

coordinate complex tasks, delegate sub-tasks, and operate in parallel, sequential,

or looping workflows.

Introduction..3
Overview...4
Agent Development Kit... 9
A2A - Agent to Agent Protocol... 17

AiBuilders.academy | 2

https://aibuilders.academy/

Introduction
In the rapidly evolving landscape of artificial intelligence, the ability to create intelligent,

autonomous agents has become a game-changer for developers, businesses, and

innovators alike.

These agents—capable of reasoning, learning, and interacting with their environments—are

transforming industries, from automation and customer service to data analysis and creative

problem-solving. With the release of Google’s groundbreaking Agent Development Kit

(ADK), building sophisticated AI agents is no longer the exclusive domain of specialized

researchers or large tech firms. This powerful, accessible toolkit empowers developers of all

backgrounds to craft custom AI agents tailored to their unique needs.

"Building AI Agents With Google’s New Agent Development Kit" is your comprehensive

guide to harnessing the full potential of this revolutionary technology. Whether you’re a

seasoned programmer or a curious beginner, this book will walk you through the process of

designing, developing, and deploying AI agents using Google’s ADK. From understanding

the core concepts of agent-based AI to leveraging the kit’s advanced tools for real-world

applications, we’ll explore step-by-step techniques, practical examples, and best practices

to help you bring your ideas to life.

In the chapters ahead, you’ll discover how to navigate the ADK’s intuitive framework,

integrate cutting-edge machine learning models, and create agents that can adapt and

thrive in dynamic environments. We’ll also dive into real-world case studies, showcasing

how businesses and developers are using the ADK to solve complex challenges and unlock

new opportunities. Whether your goal is to automate workflows, enhance user experiences,

or push the boundaries of AI innovation, this book equips you with the knowledge and tools

to succeed.

Join us on this exciting journey into the future of AI development. Let’s build intelligent

agents that not only meet today’s demands but also shape tomorrow’s possibilities with

Google’s Agent Development Kit.

AiBuilders.academy | 3

https://aibuilders.academy/

Overview
Google’s Agent Development Kit (ADK), introduced at Google Cloud Next 2025, is an

open-source framework designed to simplify the development, orchestration, evaluation,

and deployment of AI agents and multi-agent systems.

Optimized for Google’s Gemini models and the Google Cloud ecosystem, it is

model-agnostic, deployment-agnostic, and interoperable with other frameworks like

LangChain and CrewAI.

●​ Multi-Agent Architecture:

●​ ADK enables the creation of modular, scalable applications by composing

multiple specialized agents into hierarchical, collaborative systems. These

agents can coordinate complex tasks, delegate sub-tasks, and operate in

parallel, sequential, or looping workflows.

●​ Agent Types:

●​ LLM Agents (LlmAgent): Powered by large language models (e.g.,

Gemini), these agents handle natural language understanding,

reasoning, planning, and dynamic tool invocation for flexible,

language-centric tasks.

●​ Workflow Agents: Include SequentialAgent, ParallelAgent, and

LoopAgent for deterministic control over execution flows, ensuring

structured and predictable processes.

●​ Custom Agents: Developers can extend the BaseAgent class to

create tailored agents with unique logic and integrations.

●​ Rich Tool Ecosystem:

●​ ADK supports a variety of tools to extend agent capabilities:

●​ Pre-built Tools: Includes tools like Search and Code Execution for

common tasks.

●​ Custom Tools: Developers can integrate custom functions, APIs, or

OpenAPI specs.

AiBuilders.academy | 4

https://aibuilders.academy/

●​ Third-Party Integration: Compatible with tools from frameworks like

LangChain, LlamaIndex, and others, as well as other agents via

graph-based orchestration (e.g., LangGraph, CrewAI).

●​ Agent-to-Agent Tools: Agents can act as tools for other agents,

enabling complex coordination.

●​ Model Context Protocol (MCP): Facilitates integration with external

systems and data sources.

●​ Code-First Development:
●​ ADK emphasizes a programmatic approach, allowing developers to define

agent logic, tools, and orchestration in Python (or Java in v0.1.0) for flexibility,

testability, and versioning. This makes agent development feel more like

traditional software development, reducing reliance on prompt engineering.

●​ Model-Agnostic Flexibility:

●​ While optimized for Gemini models and Vertex AI, ADK supports a broad

range of LLMs (e.g., GPT-4o, Claude, Mistral) via LiteLLM integration. This

allows developers to choose the best model for their needs without altering

core logic.

●​ Native Streaming Support:
●​ ADK provides bidirectional streaming for text, audio, and video, enabling

real-time, human-like interactions. This integrates with Google’s Multimodal

Live API for seamless multimodal experiences, configurable with minimal

setup.

●​ Integrated Developer Experience:

●​ Command-Line Interface (CLI): Facilitates local testing, debugging, and

running agents.

●​ Web-Based Developer UI: Offers a visual interface to inspect agent

definitions, trace execution steps, monitor state changes, and debug

interactions (accessible at

http://localhost:8000).[](https://cloud.google.com/vertex-ai/generative-ai/docs/

agent-development-kit/quickstart)[](https://www.siddharthbharath.com/the-co

mplete-guide-to-googles-agent-development-kit-adk/)[](https://dev.to/mariano

AiBuilders.academy | 5

https://aibuilders.academy/

codes/build-your-first-ai-agent-with-adk-agent-development-kit-by-google-409

b)

●​ Callbacks: Developers can insert custom code snippets to modify agent

behavior, log events, or perform checks at specific points in the process.

●​ Built-In Evaluation Framework:

●​ ADK includes tools to systematically assess agent performance, supporting

multi-turn evaluation datasets to measure both final outputs and step-by-step

execution trajectories. This ensures reliability and guides improvements, with

evaluation possible via CLI or the Developer UI.

●​ State and Memory Management:
●​ Short-Term Memory: Managed via SessionService, which handles

conversational state within a session using a “scratchpad” for tracking events

and context.

●​ Long-Term Memory: Integrates with persistent memory services (e.g., Vertex

AI) for recalling user information across sessions.

●​ Agent-to-Agent (A2A) Protocol:
●​ ADK supports the A2A protocol, an open standard for agent communication

across platforms. Agents expose a /run HTTP endpoint and metadata via

.well-known/agent.json, enabling discovery and interoperability with external

orchestrators and ecosystems like LangGraph or CrewAI.

●​ Deployment Options:

●​ ADK agents can be containerized for deployment anywhere or integrated with

Google Cloud services like Vertex AI Agent Engine for enterprise-grade

scalability. The Agent Engine UI provides a dashboard to manage deployed

agents, monitor sessions, and debug actions.

●​ Supports over 100 pre-built connectors for enterprise systems (e.g., AlloyDB,

BigQuery, NetApp) and workflows via Application Integration, ensuring

seamless connectivity without data duplication.

●​ Security and Safety:

●​ ADK allows configuration of safety settings (e.g., for Gemini models) to

mitigate risks like harmful content. It also supports standardized

AiBuilders.academy | 6

https://aibuilders.academy/

authentication schemas (OpenAPI-like) for secure agent-to-agent

interactions.

●​ Encourages responsible design with guardrails and evaluation metrics to

ensure trustworthy agent behavior.

●​ Production-Ready Framework:

●​ Built by the team behind Google’s Agentspace and Customer Engagement

Suite, ADK is engineered for enterprise use. It supports production-grade

deployment with low latency and robust orchestration, as noted by developers

for its integration with Google’s infrastructure.

●​ Extensibility and Interoperability:

●​ ADK integrates with external frameworks (e.g., LangChain, CrewAI) and tools

like Firecrawl, Tavily, and Exa, allowing developers to leverage existing

ecosystems. Its modular design enables easy addition or removal of agents

without refactoring entire systems.

●​ Sample Agents and Community Support:
●​ ADK includes sample agents for use cases like customer service, travel

planning, and financial advising, available in Python and Java repositories.

Community contributions are encouraged via GitHub for bug reports, feature

requests, and code enhancements.

Example Use Case: A multi-agent travel assistant built with ADK might use a central host

agent to orchestrate specialized agents for flights, hotels, and activities, communicating via

the A2A protocol and FastAPI servers, with a Streamlit UI for user interaction.

Limitations and Considerations:

●​ While ADK’s documentation is praised, some users note the Web UI needs polish,

and complex multi-agent setups may face performance challenges.

●​ Certain integrations, like MCP, may have limitations being addressed in future

updates.

●​ Evaluation metrics need to extend beyond task success to address ethical concerns

like autonomous agent behavior.

AiBuilders.academy | 7

https://aibuilders.academy/

For more details, explore the official ADK documentation at google.github.io or the GitHub

repositories for ADK Python and Java. To get started, install ADK with pip install

google-adk and set up a Python 3.9+ or Java 17+ environment.

AiBuilders.academy | 8

https://aibuilders.academy/

Agent Development Kit
Google’s Agent Development Kit (ADK), launched at Google Cloud Next 2025, is a powerful

open-source framework designed to streamline the creation, orchestration, evaluation, and

deployment of AI agents and multi-agent systems.

Optimized for Google’s Gemini models and the Google Cloud ecosystem, it is

model-agnostic, deployment-agnostic, and interoperable with frameworks like LangChain

and CrewAI.

Core Capabilities of ADK

●​ Multi-Agent System Design​
ADK excels at building modular, collaborative multi-agent systems where agents

work together to solve complex tasks.

●​ Hierarchical and Collaborative Workflows: ADK supports composing

agents into hierarchies, enabling a central "host" agent to delegate tasks to

specialized agents (e.g., one for planning, another for execution). Agents can

operate in sequential, parallel, or looping configurations, making it ideal for

tasks requiring coordination, such as customer service automation or supply

chain optimization.

●​ Agent Types:

●​ LlmAgent: Leverages large language models (LLMs) like Gemini for

reasoning, natural language processing, and dynamic tool invocation.

These agents are highly adaptable for conversational or

decision-making tasks.

●​ Workflow Agents: Includes SequentialAgent (for step-by-step tasks),

ParallelAgent (for concurrent task execution), and LoopAgent (for

iterative processes).

AiBuilders.academy | 9

https://aibuilders.academy/

●​ Custom Agents: Developers can extend the BaseAgent class to

create bespoke agents tailored to specific use cases, integrating

custom logic or external APIs.

●​ Practical Example: A travel planning system might use a host LlmAgent to

interpret user requests, a SequentialAgent to book flights and hotels in order,

and a ParallelAgent to compare prices across multiple platforms

simultaneously.

●​ Extensive Tool Integration​
ADK’s tool ecosystem enhances agent functionality by enabling interaction with

external systems and data sources.

●​ Pre-built Tools: Includes tools like Search (for web queries) and Code

Execution (for running scripts), which are ready-to-use for common tasks.

●​ Custom Tools: Developers can define custom functions, integrate APIs, or

use OpenAPI specifications to connect agents to proprietary systems.

●​ Third-Party Compatibility: ADK supports tools from frameworks like

LangChain, LlamaIndex, Firecrawl, Tavily, and Exa, allowing developers to

leverage existing ecosystems.

●​ Agent-to-Agent Tools: Agents can serve as tools for other agents, enabling

complex workflows where one agent’s output feeds into another’s input.

●​ Model Context Protocol (MCP): Facilitates seamless integration with

external data sources, though some users note MCP’s limitations in handling

certain edge cases (e.g., non-standard API formats).

●​ Practical Example: An e-commerce agent could use a Search tool to fetch

product data, a custom API tool to check inventory, and an agent-to-agent

tool to coordinate with a payment processing agent.

●​ Code-First Development Approach​
ADK prioritizes a programmatic, developer-friendly experience, making it feel like

traditional software development rather than prompt engineering.

●​ Python and Java Support: Agents, tools, and workflows are defined in

Python (v0.1.0) or Java, enabling version control, unit testing, and modular

design.

AiBuilders.academy | 10

https://aibuilders.academy/

●​ Granular Control: Developers can fine-tune agent behavior, tool invocation,

and orchestration logic through code, reducing reliance on black-box

configurations.

●​ Practical Example: A developer could write a Python script to define a

customer support agent that routes queries to specialized agents (e.g., billing,

technical support) based on keyword analysis, with full control over routing

logic.

●​ Model-Agnostic Flexibility​
While optimized for Gemini models and Vertex AI, ADK supports a wide range of

LLMs via LiteLLM integration, including GPT-4o, Claude, and Mistral.

●​ Seamless Model Switching: Developers can swap models without modifying

agent logic, ensuring flexibility to optimize for cost, performance, or specific

task requirements.

●​ Multimodal Capabilities: ADK supports text, image, and video

inputs/outputs, leveraging Google’s Multimodal Live API for real-time

processing.

●​ Practical Example: A content creation agent could use Gemini for text

generation, Claude for creative writing, and a vision model for analyzing

uploaded images, all within the same ADK workflow.

●​ Real-Time Streaming and Interaction​
ADK’s native streaming support enables dynamic, human-like interactions.

●​ Bidirectional Streaming: Handles text, audio, and video streams for

real-time applications, such as live customer support or interactive tutoring

systems.

●​ Low-Latency Integration: Built on Google’s Multimodal Live API, streaming

requires minimal configuration.

●​ Practical Example: A virtual assistant could stream audio responses to user

queries while simultaneously processing uploaded images (e.g., a user

asking, “What’s this dish?” while sharing a photo).

●​ Comprehensive Developer Experience​
ADK provides tools to streamline development, testing, and debugging.

AiBuilders.academy | 11

https://aibuilders.academy/

●​ Command-Line Interface (CLI): Supports local testing, running, and

debugging of agents, making it easy to iterate during development.

●​ Web-Based Developer UI: Accessible at http://localhost:8000, the UI

allows developers to visualize agent definitions, trace execution flows,

monitor state changes, and debug interactions. Some users note the UI could

benefit from further polish for complex multi-agent systems.

●​ Callbacks: Enable developers to inject custom logic at specific points in the

agent’s lifecycle (e.g., logging, validation, or modifying outputs).

●​ Practical Example: A developer debugging a financial advisory agent could

use the CLI to simulate user inputs and the Web UI to trace how the agent

processes market data.

●​ Robust Evaluation Framework​
ADK includes built-in tools to assess agent performance systematically.

●​ Multi-Turn Evaluation: Evaluates both final outputs and step-by-step

execution paths using datasets, ensuring reliability and transparency.

●​ Metrics and Insights: Tracks task success rates, response accuracy, and

execution efficiency, accessible via CLI or Web UI.

●​ Community Feedback: Some developers suggest expanding evaluation

metrics to include ethical considerations, like bias detection in agent

responses.

●​ Practical Example: A customer service agent could be evaluated on

response accuracy and user satisfaction across 100 test queries, with results

visualized in the Web UI.

●​ State and Memory Management​
ADK provides robust mechanisms for managing conversational and persistent state.

●​ Short-Term Memory: Handled by SessionService, which maintains a

“scratchpad” for tracking events, context, and intermediate outputs within a

session.

●​ Long-Term Memory: Integrates with persistent storage (e.g., Vertex AI) to

retain user data across sessions, enabling personalized interactions.

●​ Practical Example: A healthcare agent could store a patient’s medical history

in long-term memory to provide tailored advice during follow-up sessions.

AiBuilders.academy | 12

https://aibuilders.academy/

●​ Agent-to-Agent (A2A) Protocol​
ADK implements the A2A protocol, an open standard for agent interoperability.

●​ Standardized Communication: Agents expose a /run HTTP endpoint and

metadata via .well-known/agent.json, enabling discovery and interaction

with external systems.

●​ Cross-Platform Compatibility: Allows ADK agents to collaborate with

agents built in other frameworks (e.g., LangGraph, CrewAI).

●​ Practical Example: An ADK-based logistics agent could communicate with a

third-party inventory agent to coordinate real-time stock updates.

●​ Flexible Deployment Options​
ADK supports a range of deployment scenarios to suit different needs.

●​ Containerization: Agents can be packaged as containers for deployment on

any cloud or on-premises infrastructure.

●​ Vertex AI Agent Engine: Offers a managed service with a dashboard to

monitor sessions, debug actions, and scale agents for enterprise use.

●​ Enterprise Integration: Supports over 100 pre-built connectors for systems

like AlloyDB, BigQuery, and NetApp, plus Application Integration for workflow

orchestration.

●​ Practical Example: A retail company could deploy an ADK-based

recommendation agent on Vertex AI, integrating it with BigQuery to analyze

customer purchase data in real time.

●​ Security and Safety Features​
ADK emphasizes responsible AI development with built-in safeguards.

●​ Configurable Safety Settings: For Gemini models, developers can adjust

thresholds to mitigate risks like harmful content or bias.

●​ Secure Agent Communication: Supports standardized authentication

schemas (e.g., OpenAPI-like) for agent-to-agent interactions.

●​ Guardrails: Encourages developers to implement checks for ethical behavior,

though community feedback suggests more robust tools for autonomous

agent oversight are needed.

●​ Practical Example: A chatbot for sensitive topics could use safety settings to

filter inappropriate responses and log interactions for compliance audits.

AiBuilders.academy | 13

https://aibuilders.academy/

●​ Production-Ready Scalability​
Built by the team behind Google’s Agentspace and Customer Engagement Suite,

ADK is designed for enterprise-grade performance.

●​ Low-Latency Orchestration: Ensures fast, reliable execution of multi-agent

workflows.

●​ Scalable Infrastructure: Leverages Google Cloud’s Vertex AI for

high-throughput applications.

●​ Practical Example: A financial institution could use ADK to deploy a fraud

detection system with multiple agents analyzing transactions in real time,

scaling to millions of daily queries.

●​ Community and Extensibility​
ADK fosters an open ecosystem for developers.

●​ Sample Agents: Includes pre-built examples for use cases like customer

support, travel planning, and financial advising, available in Python and Java

repositories on GitHub.

●​ Community Contributions: Encourages bug reports, feature requests, and

code contributions via GitHub.

●​ Interoperability: Seamless integration with external frameworks and tools

enhances flexibility.

●​ Practical Example: A developer could fork an ADK sample agent for

customer support, customize it with proprietary CRM tools, and contribute the

enhanced version back to the community.

Practical Applications of ADK Capabilities

ADK’s capabilities enable a wide range of real-world applications:

●​ Customer Support: Multi-agent systems handle tiered support, with LlmAgents for

natural language queries, Workflow Agents for ticketing, and custom tools for CRM

integration.

AiBuilders.academy | 14

https://aibuilders.academy/

●​ E-Commerce: Agents coordinate product recommendations, inventory checks, and

payment processing, using A2A protocols for third-party integrations.

●​ Healthcare: Agents manage patient interactions, retrieve medical records from

long-term memory, and ensure compliance with safety settings.

●​ Logistics: ParallelAgents optimize supply chain tasks like routing and inventory

management, integrating with enterprise systems via connectors.

●​ Content Creation: Multimodal agents generate text, analyze images, and stream

video tutorials, leveraging streaming and model-agnostic capabilities.

Limitations and Areas for Improvement

While ADK is robust, some limitations have been noted:

●​ Web UI Polish: The Developer UI is functional but lacks refinement for complex

multi-agent debugging, as mentioned in X posts.

●​ MCP Constraints: The Model Context Protocol may struggle with non-standard

APIs, requiring manual workarounds.

●​ Evaluation Metrics: Current tools focus on task success but could expand to

include ethical metrics like fairness or bias detection.

●​ Learning Curve: While code-first, ADK’s advanced features (e.g., multi-agent

orchestration) may require familiarity with agent-based architectures.

●​ Performance: Complex multi-agent systems may face latency issues on

resource-constrained environments, though Google Cloud deployments mitigate this.

Getting Started with ADK

To explore ADK’s capabilities:

●​ Installation: Use pip install google-adk for Python (3.9+) or set up a Java 17+

environment.

AiBuilders.academy | 15

https://aibuilders.academy/

●​ Documentation: Visit google.github.io for tutorials, API references, and sample

code.

●​ Community: Engage via GitHub repositories (ADK Python/Java) for support and

contributions.

●​ Setup: Configure Gemini API keys or other LLM credentials, then use the CLI (adk

run) or Web UI (http://localhost:8000) to build and test agents.

Why ADK Stands Out

ADK’s combination of a code-first approach, model-agnostic flexibility, and enterprise-grade

deployment options sets it apart from competitors like LangChain or CrewAI. Its integration

with Google Cloud’s infrastructure (e.g., Vertex AI, Multimodal Live API) and support for

A2A protocols make it a future-proof choice for building scalable, interoperable AI agents.

Whether you’re automating business processes, creating interactive assistants, or

experimenting with innovative AI workflows, ADK provides the tools to turn ideas into reality.

AiBuilders.academy | 16

https://aibuilders.academy/

A2A - Agent to Agent Protocol
The Agent-to-Agent (A2A) Protocol, as implemented in Google’s Agent Development Kit

(ADK), is an open standard designed to enable seamless communication and

interoperability between AI agents, whether built within the ADK or using other frameworks.

It provides a structured way for agents to discover, interact, and collaborate with each other

across platforms, fostering a decentralized and extensible ecosystem for agent-based

systems. Below is a detailed explanation of the A2A protocol, its mechanics, and its

significance, based on available information.

What is the A2A Protocol?

The A2A protocol is a standardized communication framework that allows AI agents to

exchange information, delegate tasks, and coordinate actions in a platform-agnostic

manner.

It is analogous to how APIs enable software systems to interact, but tailored specifically for

AI agents, which often require dynamic, context-aware, and multimodal interactions. In the

context of ADK, the A2A protocol enables agents to operate as modular components in

complex workflows, interacting with other ADK agents or external agents built with

frameworks like LangGraph or CrewAI.

Key Components of the A2A Protocol

●​ Agent Discovery via Metadata:

●​ Each agent adhering to the A2A protocol exposes a metadata file at a

standardized endpoint: /.well-known/agent.json.

●​ This JSON file contains essential information about the agent, such as:

●​ Agent ID: A unique identifier.

AiBuilders.academy | 17

https://aibuilders.academy/

●​ Capabilities: Supported tasks or functions (e.g., text generation, data

retrieval).

●​ Input/Output Formats: Data types and schemas the agent accepts or

produces.

●​ Authentication Requirements: Security protocols for accessing the

agent.

●​ Version Information: To ensure compatibility.

●​ Purpose: This metadata enables other agents or orchestrators to discover

and understand the agent’s functionality without manual configuration.

●​ Standardized HTTP Endpoint for Interaction:

●​ Agents expose a /run HTTP endpoint (e.g.,

https://agent.example.com/run) to receive and process requests from other

agents.

●​ Requests to this endpoint include:

●​ Task Instructions: What the requesting agent wants the receiving

agent to do.

●​ Context Data: Relevant information or state to inform the task.

●​ Authentication Tokens: To ensure secure access.

●​ Responses from the /run endpoint include:

●​ Task Output: Results of the agent’s processing (e.g., text, JSON, or

multimedia).

●​ Status Codes: Indicating success, failure, or errors.

●​ Metadata: Additional context, such as execution time or confidence

scores.

●​ Purpose: The /run endpoint provides a consistent interface for

agent-to-agent communication, regardless of the underlying technology.

●​ Authentication and Security:

●​ The A2A protocol supports standardized authentication schemas, similar to

OpenAPI specifications, to secure agent interactions.

●​ Common mechanisms include OAuth, API keys, or JWT tokens, ensuring

only authorized agents can access each other’s endpoints.

AiBuilders.academy | 18

https://aibuilders.academy/

●​ Purpose: Protects sensitive data and ensures trustworthy interactions in

multi-agent systems.

●​ Flexible Data Exchange:

●​ The protocol supports a variety of data formats, including JSON, text, and

multimodal inputs/outputs (e.g., images, audio), depending on the agent’s

capabilities.

●​ Agents can negotiate data formats via the metadata in agent.json, ensuring

compatibility.

●​ Purpose: Enables agents to handle diverse tasks, from simple text-based

queries to complex multimodal workflows.

●​ Error Handling and Retry Logic:

●​ The protocol includes standardized error codes and retry mechanisms to

handle failures gracefully.

●​ For example, a receiving agent might return a 429 Too Many Requests status,

prompting the requesting agent to retry after a delay.

●​ Purpose: Ensures robust communication in distributed systems where

agents may face transient issues.

How the A2A Protocol Works in Practice

Here’s a simplified workflow of how the A2A protocol facilitates agent-to-agent

communication:

●​ Discovery:

●​ Agent A (the requester) queries Agent B’s metadata at

https://agent-b.example.com/.well-known/agent.json to confirm Agent B

can perform a desired task (e.g., fetch weather data).

●​ Request:
●​ Agent A sends a POST request to Agent B’s /run endpoint with:

●​ Task: “Retrieve current weather for New York.”

●​ Authentication: An API key.

AiBuilders.academy | 19

https://aibuilders.academy/

●​ Context: Preferred format (JSON) and units (Celsius).

●​ Processing:

●​ Agent B processes the request, possibly invoking internal tools (e.g., a

weather API) or coordinating with other agents.

●​ Response:

●​ Agent B returns a JSON response to Agent A, including the weather data or

an error message if the task fails.

●​ Orchestration:

●​ Agent A incorporates Agent B’s response into its workflow, potentially passing

the data to another agent (e.g., a travel planner).

Use Cases for the A2A Protocol

The A2A protocol’s interoperability makes it versatile for various applications:

●​ Multi-Agent Workflows:

●​ In a customer service system, an ADK-based LlmAgent handles user queries

and delegates specific tasks (e.g., order tracking) to a specialized agent via

the A2A protocol, even if the latter is built with a different framework.

●​ Cross-Platform Collaboration:

●​ An ADK agent for inventory management communicates with a

CrewAI-based pricing agent to optimize stock levels and pricing dynamically,

using A2A to bridge the frameworks.

●​ Enterprise Integration:

●​ An ADK agent on Google Cloud’s Vertex AI interacts with a third-party agent

hosted on AWS to synchronize data across systems, leveraging A2A’s

standardized endpoints.

●​ Decentralized Agent Ecosystems:

●​ Developers create public agents (e.g., a news summarizer) that other agents

can discover and invoke via A2A, fostering a marketplace of reusable AI

services.

AiBuilders.academy | 20

https://aibuilders.academy/

Advantages of the A2A Protocol

●​ Interoperability:

●​ Enables agents built with different frameworks (ADK, LangGraph, CrewAI) to

work together, reducing vendor lock-in and encouraging ecosystem growth.

●​ Scalability:

●​ Standardized endpoints and metadata make it easy to add new agents to a

system without extensive reconfiguration.

●​ Modularity:

●​ Agents can be developed independently and combined as needed, promoting

reusable and maintainable code.

●​ Security:

●​ Built-in authentication and error handling ensure safe and reliable

interactions.

●​ Future-Proofing:

●​ As an open standard, A2A is designed to evolve with the AI agent landscape,

supporting new data formats and protocols.

Limitations and Considerations

●​ Implementation Complexity:

●​ While the protocol is standardized, setting up secure, scalable /run endpoints

and metadata files requires technical expertise, especially for cross-platform

systems.

●​ Performance Overhead:

●​ HTTP-based communication may introduce latency in high-frequency agent

interactions, though this can be mitigated with optimized infrastructure.

●​ Adoption:

AiBuilders.academy | 21

https://aibuilders.academy/

●​ As a relatively new standard, A2A’s success depends on widespread

adoption by other frameworks and developers. Limited mentions in X posts

suggest it’s still gaining traction.

●​ Metadata Maintenance:

●​ Keeping agent.json files accurate and up-to-date can be challenging for

agents with frequently changing capabilities.

A2A Protocol in the Context of ADK

In ADK, the A2A protocol is tightly integrated to support multi-agent orchestration:

●​ Agent Discovery: ADK agents automatically generate agent.json files based on

their configuration, simplifying setup.

●​ FastAPI Integration: ADK uses FastAPI to host /run endpoints, ensuring

low-latency, asynchronous communication.

●​ Interoperability: ADK’s A2A implementation allows its agents to interact with

non-ADK agents, enhancing flexibility in hybrid systems.

●​ Example: An ADK travel agent might use A2A to query a third-party flight booking

agent’s /run endpoint, retrieving real-time availability data to include in its

recommendations.

Technical Example

Below is a simplified Python snippet showing how an ADK agent might implement an

A2A-compatible /run endpoint using FastAPI:

python

AiBuilders.academy | 22

https://aibuilders.academy/

Python

from fastapi import FastAPI, HTTPException

from pydantic import BaseModel

app = FastAPI()

class AgentRequest(BaseModel):

 task: str

 context: dict

class AgentResponse(BaseModel):

 result: dict

 status: str

@app.get("/.well-known/agent.json")

async def get_agent_metadata():

 return {

 "agent_id": "weather-agent-001",

 "capabilities": ["weather_forecast"],

AiBuilders.academy | 23

https://aibuilders.academy/

 "input_formats": ["json"],

 "output_formats": ["json"],

 "authentication": "api_key"

 }

@app.post("/run")

async def run_task(request: AgentRequest):

 if request.task == "get_weather":

 # Simulate weather API call

 result = {"city": request.context.get("city"), "temp": "22°C"}

 return AgentResponse(result=result, status="success")

 raise HTTPException(status_code=400, detail="Unsupported task")

This agent exposes its metadata and processes weather-related tasks, adhering to A2A

standards.

Getting Started with A2A in ADK

To leverage the A2A protocol in ADK:

●​ Install ADK: pip install google-adk (Python 3.9+).

AiBuilders.academy | 24

https://aibuilders.academy/

●​ Configure an Agent: Use ADK’s API to define an agent with a /run endpoint and

agent.json metadata.

●​ Test Locally: Run the agent via ADK’s CLI (adk run) and access the Web UI

(http://localhost:8000) to verify A2A interactions.

●​ Explore Documentation: Visit google.github.io for A2A-specific guides and sample

code.

●​ Integrate Externally: Use tools like curl or Python’s requests library to test

interactions with non-ADK agents.

Conclusion

The A2A protocol is a cornerstone of ADK’s vision for a collaborative, interoperable AI agent

ecosystem. By standardizing agent discovery, communication, and security, it enables

developers to build modular, scalable systems that integrate seamlessly with diverse

platforms. While still maturing, its open-standard approach and ADK’s robust

implementation make it a promising tool for creating next-generation AI workflows.

AiBuilders.academy | 25

https://aibuilders.academy/

	Building AI Agents With Google’s Agent Development Kit
	Introduction
	Overview
	Agent Development Kit
	A2A - Agent to Agent Protocol

